十一月 2024 |
服務專線
問題諮詢,請撥打以上服務專線。
【記者姚碩彥/台北】在國家科學及技術委員會學術攻頂計畫支持下,台大周必泰教授研究團隊,成功將團隊本身所保持的有機強放光世界紀錄,由原先的840 奈米一舉突破到1000 奈米。此傑出的研究成果已於今年10月10日正式發表於國際光電頂尖的「自然光電」(Nature Photonics)期刊,未來有望應用於即時生醫影像及生化感測解析,成為穿載式生醫檢測的利器,同時其可降低資訊傳遞吸收損失,提升光纖科技效能,是未來生醫及通訊科技突破性發展不可或缺之基石。
近紅外(NIR)波長在1000~1700 nm的範圍俗稱紅外二區(NIR(II)),在生醫領域上,它可以穿過皮膚組織以及血管做深層成像檢測或啟動藥物作用,也是重要可穿戴式生醫產品(如血氧計、光療貼片)的主要光源;此外,因為吸收損失少,它也是光纖科技在資訊傳遞上的重要波長範圍。目前這區域的放光材料主要為半導體基材以及鑭系金屬相關螢光粉,但其物理性質如光度之間變化時間響應慢及材料選擇有限等,導致應用上有所限制,不利於生醫及光電長遠發展。紅外二區放光材料若要有突破性的進展,以及考量未來更普遍的應用性,具多樣性的有機分子材料是最佳的選擇,而目前此波長的有機發光材料非常罕見。
早在1970 年所提出的「能隙定律」(energy gap law)中已描述到,有機分子從基態被光能或電能激發到電子激發態後,可以放光或放熱的形式回到原來的基態。而有機分子材料在紅外二區在能隙定律中具顯著的熱淬滅效應,理論上其放光產率接近於零,不太可能適合於紅外二區發光應用。因此如何讓有機分子在紅外二區有強放光性質,長久以來在國際光電科研上被認為是一個不可能達成的任務。
為了化不可能為可能,周必泰教授團隊自2017年起從理論基礎出發,思考若耦合是不可避免發生的定律,那麼是否可以經由其他方式,來有效的降低有機材料激子/振動的耦合強度,進而減低熱消散的發生機率。透過與國立清華大學季昀教授、國立海洋大學洪文誼教授以及國家同步輻射中心莊偉綜博士的合作,本次刊登「自然光電」(Nature Photonics)期刊的論文,是利用鉑金屬錯合物配位基分子的更加平面化,以及將有機化合物中的氫原子氘化(將氫以其同位素氘置換),一舉突破團隊2020年發表在自然光電的世界紀錄840 奈米,在分子的放光原理及設計上做出卓著的國際性貢獻。
周必泰教授研究團隊審慎檢視能隙定律理論,量化每個分子之耦合振動效應,透過碳氫鍵之氫原子氘化來進一步降低耦合熱消散速率。透過實證,以分子堆疊加上全面性的氘化,成功的突破能隙定律在紅外二區的桎梏。
據此設計合成製備出的電致發光元件(OLED),其放光波長已達到1000奈米,內部量子產率達21%,外部4.2%,皆為目前之世界紀錄。周必泰教授表示,未來將挑戰前所未有的有機分子紅外三區範圍(1700-2000 nm)的放光領域,以及將現有成果商業化,並歡迎有興趣的學者及業者能一起來共襄盛舉。2022/12/07
- . 106年重陽節「幸福久久 樂活三民」敬老活動 10/14起3梯次登場
- . 107年度綜合所得稅結算申報講習會3/28開始報名 歡迎踴躍參加!
- . 「青春105 與台南共舞 」系列活動 讓青少年暑假發展興趣遠離毒害
- . 尋找畢書盡 打卡反毒抽限量公仔! 活動期間自6月1日至6月25日止
- . 讓癌症免疫細胞治療多元化 衛福部擬修法 並准兩項免疫抗癌新藥上市
- . 陳菊陪蔡英文搭乘輕軌、聽取捷運黃線簡報 感謝支持區域發展平衡